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A Game Theoretic Framework for
Power Control in Wireless Sensor Networks

Shamik Sengupta, Mainak Chatterjee, and Kevin A. Kwiat

Abstract—In infrastructure-less sensor networks, efficient usage of energy is very critical because of the limited energy available to

the sensor nodes. Among various phenomena that consume energy, radio communication is by far the most demanding one. One of

the effective ways to limit unnecessary energy loss is to control the power at which the nodes transmit signals. In this paper, we apply

game theory to solve the power control problem in a CDMA-based distributed sensor network. We formulate a noncooperative game

under incomplete information and study the existence of Nash equilibrium. With the help of this equilibrium, we devise a distributed

algorithm for optimal power control and prove that the system is power stable only if the nodes comply with certain transmit power

thresholds. We show that even in a noncooperative scenario, it is in the best interest of the nodes to comply with these thresholds. The

power level at which a node should transmit, to maximize its utility, is evaluated. Moreover, we compare the utilities when the nodes are

allowed to transmit with discrete and continuous power levels; the performance with discrete levels is upper bounded by the continuous

case. We define a distortion metric that gives a quantitative measure of the goodness of having finite power levels and also find those

levels that minimize the distortion. Numerical results demonstrate that the proposed algorithm achieves the best possible payoff/utility

for the sensor nodes even by consuming less power.

Index Terms—Wireless sensor network, game theory, distributed power control, energy efficiency.

Ç

1 INTRODUCTION

THE advancements in wireless communication technolo-
gies coupled with the techniques for miniaturization of

electronic devices have enabled the development of low-
cost, low-power, multifunctional sensor networks. The
sensor nodes in these networks are equipped with sensing
mechanisms that gather and process information. These
nodes are also capable of communicating untethered over
short distances [1]. Oftentimes, sensor networks are
deployed at locations that do not allow human intervention
due to difficulty in accessing such areas; hence, refurbishing
energy via replacing battery is infeasible. As a result, these
networks are deployed only once with finite amount of
energy available to every sensor node. As energy is
depleted for sensing, computing, and communication
activity, the algorithms and protocols that are used must
be as energy efficient as possible. Since the transmission of
data signals consumes the most energy, transmission at the
optimal transmit power level is very crucial. This is because
a node will always try to transmit at high power levels just
to make sure that the packets are delivered with a high-
success probability. Though this is a good short-term

strategy, it proves to be counterproductive in the long run
as energy is depleted faster. Also, transmitting at higher
power levels will increase the interference to other nodes,
which in turn will increase their power levels to combat the
interference. This will create a “cascade” effect, where the
nodes will continue to increase their power levels in
response to the increased interference. Of course, transmis-
sion at lower power levels will compromise the quality of
communication, and the desired quality of service might
not be met. Hence, smart power control algorithms must be
employed that find the optimal transmit power level for a
node for a given set of local conditions. Some distributed
iterative power control algorithms have been proposed for
cellular networks; these algorithms investigate to find the
power vector for all the nodes that minimizes the total
power with good convergence [2], [3].

It is intuitive that the actions of a node, in response to

other nodes’ actions, would be focused on maximizing their

“profit.” The nodes run a very simple cost-evaluation

function, and the appropriate response is motivated by what

the nodes desire—usually determined by some utility

function. Nodes adapt their behavior by learning their utility

for each potential action through feedback. The feedback is

just the profit or loss as defined by the overall objective

function of the network. In this way, nodes dynamically

react to changing network conditions, energy budgets, and

external stimuli. Since all rational nodes will seek to optimize

their utility, it makes more sense to program the utilities of

the nodes in line with the system-wide goals such as energy

conservation, data fidelity, or latency for data delivery.
In this respect, it is important that concepts from game

theory are used to guide the design process of the nodes that

work in a distributed manner. Ideas and fundamental results

from game theory have been used for solving resource

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 2, FEBRUARY 2010 231

. S. Sengupta is with the Department of Mathematics and Computer Science,
John Jay College of Criminal Justice of the CUNY, New York, NY 10019.
E-mail: ssengupta@jjay.cuny.edu.

. M. Chatterjee is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816.
E-mail: mainak@eecs.ucf.edu.

. K.A. Kwiat is with Information Directorate, Air Force Research
Laboratory, Rome, NY 13441. E-mail: Kevin.Kwiat@rl.af.mil.

Manuscript received 22 Feb. 2008; revised 14 July 2008; accepted 29 May
2009; published online 10 June 2009
Recommended for acceptance by A. Zomaya.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-02-0085.
Digital Object Identifier no. 10.1109/TC.2009.82.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: ROME AFB. Downloaded on July 20,2010 at 10:57:32 UTC from IEEE Xplore.  Restrictions apply. 

POSTPRINT

mailto:ssengupta@jjay.cuny.edu
mailto:mainak@eecs.ucf.edu
mailto:Kevin.Kwiat@rl.af.mil
mailto:tc@computer.org


management problems in many computational systems,
such as network bandwidth allocation, distributed database
query optimization, and allocating resources in distributed
systems such as clusters, grids, and peer-to-peer networks
([4], [5], [6], [7], [8], [9], [10], [11], and references therein). In a
game theoretic framework, the nodes buy, sell, and consume
goods in response to the prices that are exhibited in a virtual
market. A node attempts to maximize its “profit” for taking a
series of actions. Whether or not a node receives a profit is
defined by the success of the action; for example, whether a
packet is successfully received. The node’s goal is to
maximize its profit, subject to constraints on resource usage,
such as energy or bandwidth. By modeling the objective
function (e.g., optimizing energy usage) of the network as a
profit, the nodes can be stimulated to work in a cooperative
manner. The essence of this research is the application of
game theory to achieve efficient energy usage through
optimal selection of the transmit power level.

In this paper, we take a game theoretic approach to
regulate the transmit power levels of the nodes in a
distributed manner and investigate if any optimality is
achievable. We focus on the problem of optimal power
control in wireless sensor networks with the aim of
maximizing the net utilities (defined later) for the rational
sensor nodes. Due to the distributiveness of the network,
the nodes do not have complete information about the
strategies taken by other nodes, and thus the games are
categorized as incomplete-information games. Also, coop-
erative behaviors (such as transmission power control,
cooperation for increasing system capacity, reducing inter-
ference for each other, honestly revealing private informa-
tion) though highly desired, might not be achievable. One
may argue that the sensor nodes usually belong to the same
authority, and hence they can be programmed to negotiate
strategies that is most advantageous for the entire network.
However, this claim may not be applicable to the power
control problem in sensor networks as strategies for
transmission power and negotiation for self-coexistence
must be done in real time and distributed manner [12], [13].

We adopt a noncooperative game model where each
node tries to maximize its net utility. Net utility is
computed by considering the benefit received and the cost
incurred for packet transmissions. As we do not use any
information about the separate transmitting power level
strategies taken by other nodes, control signals are greatly
reduced, thereby helping nodes in conserving energy. We
also study practical systems where the nodes are allowed
only discrete power levels. We compare such restricted
cases with systems that allow continuously variable power
levels and show that these continuous power levels provide
a bound on the performance. In summary, the contributions
of this paper are as follows:

. We formulate a noncooperative game under
incomplete information for the distributed sensor
nodes. We define the benefit received and the cost
incurred, and hence the net utility for successful
packet transmission.

. We investigate the existence of Nash equilibrium
[14]. We do so for two different cases—with fixed
channel and varying channel conditions. We observe

that there exists a transmission power threshold and
channel quality threshold that the nodes must
comply with in order to achieve Nash equilibrium.
We also observe that with repeated games in effect,
sensor nodes follow the transmission strategies to
achieve Nash equilibrium even without presence of
any third party enforcement.

. Next, we consider a system that would allow only
finite number of discrete power levels. A metric
called distortion factor is defined to investigate the
performance of such system and compare it with
systems that would allow any continuous power
levels. We also propose a technique to find the
power levels that would minimize the distortion.

. We present numerical results to verify the perfor-
mance of the proposed games. The results show that
if the nodes comply with the transmit thresholds,
net utility is maximized. Also with the proposed
mechanism of finding discrete power levels, distor-
tion factor is reduced.

The rest of the paper is organized as follows: In Section 2,
we discuss the basics of game theory and show how this
theory has been applied to ad hoc and sensor networks in the
past. The distribution function for the number of interfering
sensor nodes is derived in Section 3. We formulate the
noncooperative game under incomplete information and
establish the utility functions in Section 4. We study the
existence of Nash equilibrium in Section 5 and calculate the
thresholds for transmission power and channel conditions
based on the equilibrium obtained. In Section 6, we evaluate
the desired power level for transmission so that expected
power efficiency and thus utility can be maximized. The
effect of having discrete allowable power levels and how to
obtain those levels are discussed in Section 7. In Section 8, we
present the numerical results. Conclusions are drawn in the
last section.

2 GAME THEORY FOR AD HOC/SENSOR NETWORKS

Game theory has been successfully used in ad hoc and sensor
networks for designing mechanisms to induce desirable
equilibria by offering incentives to the forwarding nodes
[15], [16], [17] and also punishing nodes for misbehaving
[18]. Recently, there has been a growing interest in applying
game theoretic techniques to solve problems where there are
agents/nodes that might not have the motive or incentive to
cooperate. Such noncooperation is very likely since the
rational agents will not work (e.g., forward packets) for
others unless, and until, convinced that such cooperation
will eventually be helpful for themselves.

In [13], Niyato et al. investigated energy harvesting
technologies required for autonomous sensor networks
using a noncooperative game theoretic technique. Nash
equilibrium was proposed as the solution of this game to
obtain the optimal probabilities of the two states, viz., sleep
and wake up, that were used for energy conservation. Their
solutions revealed that sensor nodes selfishly try to
conserve energy at the expense of high packet blocking
probability. Xidong et al. applied game theoretic dynamic
power management (DPM) policy for distributed wireless
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sensor network using repeated stage games [19]. A game
theoretic energy balance routing (GTEBR) algorithm has
been proposed to avoid uneven energy consumption in
wireless sensor networks in [20]. The framework of static
game with incomplete information was modeled and
existence of Nash equilibrium was also proved. Energy
efficient self-organization protocol for wireless sensor
networks with reduced coordination was studied by Olariu
et al. in [21]. Maskery and Krishnamurthy described
decentralized, game theoretic adaptive mechanisms, which
can be deployed to manage sensor activities with low-
coordination overhead [22]. Evolutionary game model was
discussed with dynamically adaptive regret matching. In
[23], Chang and Tassiulas investigated the energy efficiency
problem in wireless sensor networks as the maximum
network lifetime routing problem. They proposed to adjust
the transmit power levels to just reach the intended next
hop receiver such that the energy consumption rate per
unit information transmission can be reduced.

As far as ad hoc networks are concerned, Buttyan and
Hubaux [16] proposed the concept of virtual currency
(called “nuglets”) which is a method to reward nodes
participating in forwarding packets in a mobile ad hoc
network. The Terminodes project [24] has proposed a
method that encourages cooperation in ad hoc networks
that is based on the principles laid out in [25]. It has been
well established that incorporating pricing schemes (in
terms of reward and penalty) can stimulate a cooperative
environment, which benefits both the network and the
nodes. A traffic-pricing-based approach was proposed in
[26]. The compensation of the traffic forwarding depends
not only on the energy consumption of the transmission but
also on the congestion level of the relaying node. As far as
selfishness in ad hoc networks is concerned, Srinivasan et al.
[18] explored the selfish behavior of nodes and showed the
effect on the evolution of the topology. In [27], two
techniques were presented that deal with selfish nodes in
an ad hoc network, where a watchdog identifies the
misbehaving nodes. Also, there are nodes that rate the
routes and help routing protocols avoid routes containing
misbehaving nodes. In [15], the “confidant” protocol was
proposed that not only detects misbehavior and routes
traffic around the misbehaving nodes but also isolates them
from the network. The “core” protocol proposed in [28] was
based on profiling the nodes, i.e., each node maintains a
reputation table for the other nodes. The reputation value is
updated based on the node’s own observations and the
information provided by the other nodes. In [29], a power-
allocation and signal shaping game is presented for multi-
ple-antenna “ad hoc” networks with the help of iterative
power-control and signal-shaping algorithms. Multiple
uncoordinated transmit-receive nodes in wireless ad hoc
network simultaneously attempt to communicate and
undergo learning and training phase in this algorithm. The
authors deal with distributed power allocation in ad hoc
networks, and the objective is the competitive maximization
of the information throughput perceived in the network. In
[30], Michiardi and Molva analyzed whether it is beneficial
for a node to join a network under certain assumptions.
Through a utility function (that captures the node’s payoff

and its resource consumption), a node decides whether to
cooperate or defect.

Though game theory has been used to study various
aspects of ad hoc and sensor networks, there is none that
tries to find the optimal transmission power levels when the
nodes are allowed both continuous and discrete power
levels. The problem arises due to the difficulty in character-
izing the information that each sensor node has about the
others. Hence, seeking the desired operating point in the
incomplete-information scenario becomes a challenge.
Though there are several game theory power control
approaches for cellular networks (see [31] and references
therein), those centralized algorithms cannot be directly
applied to sensor networks. In this paper, we attempt to
develop a game theoretic framework that helps the nodes
decide on the optimal power levels for a specified objective
given by the utility function.

3 INTERFERENCE FOR RANDOMLY DISTRIBUTED

NODES

We consider the problem of communication between
neighboring nodes in a network that consists of sensor
nodes scattered randomly over an area. Given that the sensor
nodes have limited energy, buffer space, and other resources,
contention-based protocols may not be a suitable option.
Here, as an alternative, we use code division multiplexing,
where distinct codes (signatures) can be allocated to different
nodes with possible code reuse between spatially separated
nodes. Note that we do not necessarily consider signature
codes with perfectly zero cross-correlation (such as the
Walsh-Hadamard code sets) because of 1) the restriction in
the number of available orthogonal codes and 2) the loss of
orthogonality in practice due to physical layer asynchroni-
city and/or multipath signal propagation. In general, due to
nonzero cross-correlation between node signatures, we
understand that there is an upper limit in the number of
simultaneously active nodes in the vicinity of a receiver (i.e.,
within the interference range of a receiver) so that the
received SINR stays above a minimum operational thresh-
old. To obtain the node distribution, we use the following
assumptions and definitions:

. All nodes have an omnidirectional transmit and
receive antenna of the same gain.

. Receiving and interference ranges for each sensor
node depend on the transmission power of the
sender and the other sensor nodes in vicinity.

. The receiving distance, rR, is defined as the maximum
distance from which a receiving node can correctly
recover a transmitted signal.

. The interference distance, rI , is defined as the
maximum distance from which a receiving node
can sense a carrier.

. The signal power level at each receiver is controlled
by the corresponding transmitter and is equal to the
lowest possible operational threshold. Since the
internodal distance varies randomly, the required
transmit power is different for different transmitter-
receiver pairs.
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Fig. 1 shows node w as the receiver under consideration.
Node u, while transmitting to node v, acts as an interferer to
node w. Note that the reverse need not necessarily be true
since the transmission power of node u and node w can be
different. We now proceed to obtain an expression for the
average number of potential interfering neighbors around a
receiver. A rigorous treatment for the distribution of
interference power can be found in [32].

3.1 Node Distribution

The interference area is aI ¼ �r2
I . We consider that there are

M nodes that are uniformly randomly scattered over a region
of area A. If M � 1 and aI � A, we can approximate the
distribution of nodes using a Poisson distribution with node
density as � ¼ M

A . Theoretically, for randomly scattered
nodes, the maximum number of interferers can extend up
to infinity. For all practical purposes, we can consider the
maximum number of interferers to be the expected value plus
a multiple of standard deviation,

ffiffiffi
�
p

. For example, if we were
to account for 99.6 percent of all the nodes, then we have to
consider 3� ffiffiffi

�
p

in addition to the mean [33]. The expected
(mean) number of nodes in area aI is �aI . For a Poisson
distribution, the variance (�) is equal to �aI . Thus, the
maximum number of interferers for this case can be given by

N ¼ �aI þ 3
ffiffiffiffiffiffiffi
�aI
p

: ð1Þ

Note, we considered Poisson distribution for the layout of
the nodes. This is primarily because of its mathematical
tractability. We could have used any other distribution for
the nodes. However, this would have no bearing on the
analysis that follows.

4 NONCOOPERATIVE GAME UNDER INCOMPLETE

INFORMATION

With the average number of interferers for a node known,
we formulate a game for such a distributed sensor network
and then try to devise the game strategies to find if any
steady state equilibrium exists for this game model.

4.1 Game Formulation

We assume a set of homogeneous nodes in our sensor
network playing repeated game. The information from

previous rounds are used to devise strategies in future
rounds. We focus our attention on a particular node with
potentially as many as N neighbors within the interference
range. Due to homogeneity of the nodes, the actions
allowed by the nodes are the same, i.e., all the nodes can
transmit with any power level to make its transmission
successful. Also, the nodes have no information if the other
nodes are transmitting, hence leading to an incomplete
information scenario [34]. If the nodes transmit with an
arbitrary high power level, it will increase the interference
level of the other nodes. The neighboring nodes in turn will
transmit at higher power to overcome the effect of high
interference. Soon, this will lead to a noncooperative
situation. To control this noncooperative behavior, we try
to devise an equilibrium game strategy which will impose
constraints on the nodes to act in cooperative manner even
in a noncooperative network.

We assume the existence of some strategy sets S1, S2, . . . ,
SNþ1 for the nodes 1, 2, . . . , ðN þ 1Þ. These sets consist of all
possible power levels ranging from the minimum transmit
power smin to maximum transmit power smax. Note that smin
can be zero. smin ¼ 0 implies that a node decides not to
transmit at that game iteration. However, the question is:
Will there be any finite value of smax that the nodes will follow
and will still be able to maximize their benefits? In other
words, does there exist any transmission power upper bound
obeying which nodes can reach Nash equilibrium and can
extend their network lifetime? We investigate our dynamic
repeated game keeping this in mind.

In this game, if node 1 chooses its power level s1 2 S1,
node 2 chooses its power level s2 2 S2, and so on, we can
describe such a set of strategies chosen by all N þ 1 (a node
with its N neighbors) nodes as one ordered N þ 1-tuple,

s ¼ fs1; s2; . . . ; sNþ1g: ð2Þ

This vector of individual strategies is called a strategy
profile (or sometimes a strategy combination). For every
different combination of individual choices of strategies, we
would get a different strategy profile s.

The set of all such strategy profiles is called the space of
strategy profiles S0. It is simply the Cartesian product of the
power vectors Si for each node. We write it as

S0 ¼ S1 � S2 � � � � � SNþ1: ð3Þ

We consider that the strategy profile of all the nodes are
identical, i.e., all the nodes can transmit with a power level
between smin and smax. Since all the nodes are identical, we
assume that the set of allowable transmit powers is
applicable to all the nodes. Hence, Si ¼ Sj ¼ S, where i

and j denote any two nodes, and S is the fixed strategy
profile of any node. Then, (3) reduces to

S0 ¼ S � S � � � � ðN þ 1Þ times: ð4Þ

4.2 Utility

The game is played by having all the nodes simultaneously
pick their individual strategies. This set of choices results in
some strategy profile s 2 S0, which we call the outcome of
the game. Each node has a set of preferences over these
outcomes s 2 S0. We assume that each node’s preferences
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over S can be represented by von Neumann-Morgenstern
utility function [35].

At the end of an action, each node i 2 I receives a
utility value uiðsÞ ¼ uiðsi; s�iÞ. s�i is the strategy profile of
all the nodes but for the ith node. Note that the utility
each node receives depends not only on the strategy it
picked, but also on the strategies which all the other nodes
picked. In other words, the utility to any one node
depends on the entire strategy profile. The individual
utilities for all the N þ 1 nodes for a particular strategy
profile s define a utility vector uðsÞ for that strategy profile
uðsÞ � ðu1ðsÞ, . . . , uNþ1ðsÞÞ.

With respect to the problem at hand, in every game
round, a node will choose to transmit or not to transmit, or
to increase or decrease its power, and correspondingly will
choose a power level if it decides to transmit. Theoretically,
a node should choose its own power level depending on the
power levels chosen by all other nodes; but in a distributed
sensor network, it is not possible for a node to know about
the transmitting strategies of other nodes.

Based on the information available to a node, i.e., its own
power level, channel condition, and expected SINR of
neighboring receiver nodes (which is obtained through
periodic acknowledgment received), we formulate the
utility expression for a transmitter sensor node. With the
notations already defined and to emphasize that the ith node
has control over its own power level si only, we define the
utility (if a node is transmitting) as [36]

uiðsi; s�iÞ ¼
br

Fsi
fð�jÞ; ð5Þ

where node i is transmitting to a node j, and b is the

number of information bits in a packet of size F bits. r is

the transmission rate in bits/sec using strategy si. fð�jÞ is

the efficiency function which increases with expected SINR

of the receiving node. We define the efficiency function,

fð�jÞ ¼ ð1� 2PeÞF , where Pe is the bit error rate (BER). The

bit error rate, Pe, depends on the channel state and

interference from other nodes, i.e., in other words, Pe is a

function of SINR. Though the instantaneous knowledge of

SINR will help a node decide on its strategy, this

information is not known a priori; however, an expected

SINR can be used which the sensor nodes compute based

on past observations. Correspondingly, Pe can only be

estimated; for example, with a noncoherent FSK modula-

tion scheme, Pe ¼ 0:5e�
�j
2 , where �j denotes the expected

SINR of node j. We also assume that the utility value

obtained by a node when it decides not to transmit is 0.

4.3 Net Utility

With the utility of a node defined, let us consider the cost/
penalty incurred by a node. We assume that the each
sensor node tries to maximize its own utility by adjusting
its own power optimally as given by utility function. The
utility function from a sensor node’s perspective takes into
account the interference it gets from other nodes; however,
it ignores the fact that this node imposes on itself in terms
of drainage of energy. Pricing (or regulating cost) has been
shown to be effective in regulating this externality, as it
encourages the nodes to use resources more efficiently. We
use pricing (cost) as a negative incentive signal to model

the usage-based cost that a sensor node must pay for using
the resource. Hence, we consider a cost component that
accounts for the energy consumed/drained by the sensor
nodes with usage of resources (transmission power).
Therefore, we define a metric: net utility, which is the
utility achieved minus the cost incurred. This justifies the
rational (self-optimizing) behavior of a sensor node even in
the distributed scenario. As a result, a node transmitting at
a high power will increase the probability of success, but at
the same time, it will incur the cost of transmission,
providing the possibility to decrease the net utility. Thus,
each of the rational sensor nodes’ objective function would
be to optimize the transmission power such that it can
sustain maximized net utility. Formal definition for the cost
component is presented in the next section.

5 TRANSMISSION THRESHOLDS FOR NASH

EQUILIBRIUM

With the strategy set and net utility defined, a game is played
by all the players/nodes simultaneously picking their
individual strategies. This set of choices results in some
strategy profile s 2 S. We typically assume that all the players
are rational and pick their strategy in such a way so as to
maximize their utilities. If there is a set of strategies with the
property that no player can benefit by changing his strategy
unilaterally while the other players keep their strategies
unchanged, then that set of strategies and the corresponding
utilities constitute the Nash equilibrium. In other words, when
all players correctly forecast their opponents’ strategies and
play their best responses to these forecasts, the resulting
strategy profile is a Nash equilibrium; this exists if and only if
there exists a fixed point of a particular best-response
correspondence. In this section, we study the existence of
Nash equilibrium for two different scenarios—fixed channel
conditions and varying channel conditions.

5.1 Nash Equilibrium with Fixed Channel Condition

When channel condition is fixed, to gain better utility,
nodes try to transmit at a high power which eventually
drains their batteries. If the strategy of the ith node is to
transmit at signal power si 2 S, the cost incurred is a
function of si, which we denote by AðsiÞ. si is a random
variable denoting transmitting signal power of ith node.
Motivated by the physical significance of price (cost), AðsiÞ
should increase monotonically with the transmit power si
(necessary condition) and should also be convex (sufficient
condition). The reason for this is as follows: Consider two
nodes 1 and 2, transmitting at powers s1 and s2,
respectively, such that s1 � s2. Let both nodes increase
their transmit powers by � units. The impact on the total
lifetime of node 1 would then be much lesser than that of
node 2. Therefore, the cost (penalty) experienced by node 2
for transmitting an additional power of � units is more than
that experienced by node 1. Thus, the rate of change of the
cost with respect to si;

dA
dsi

, is nondecreasing. Hence, AðsiÞ is
a convex function of si. Note that a linear pricing is a
special case of a convex pricing. Thus, the net utility, uneti , of
ith node can be written as

uneti ¼
uiðsi; s�iÞ �AðsiÞ; if transmitting;
0; if not transmitting:

�
ð6Þ
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Let us now analyze the existence of Nash equilibrium. If
a node is allowed to transmit at the calculated power,
however high, then it is obvious that

Z 1
0

fsiðxÞdx ¼ 1; ð7Þ

i.e., the node transmits with probability 1. fsiðxÞ is the
probability density function of si. However, for all practical
purposes, a node cannot transmit at arbitrarily high power
and must decide on a maximum threshold power Pt. The
imposition of the threshold implies that the node will not
transmit if its calculated transmit power is above the
threshold Pt. In other words, exceeding this threshold will
introduce nonbeneficial net utility for the node. Due to this
restriction, the probability that a node transmits (or does not
transmit) will be dependent on the threshold Pt; smaller the
threshold, smaller the probability of transmission. A node
transmits at a power level si such that 0 < si � Pt. Then, the
probability that a node is transmitting can be given by

Z Pt

0

fsiðxÞdx ¼ pðPtÞ: ð8Þ

This definition of pðPtÞ assumes that a node chooses not to
transmit if the interference and noise level of the receiver is
above a certain threshold.

Now, a node can be in two modes: either it is transmitting
or it is not transmitting (idle or receiving). Then, we can
assume that the probability with which a node transmits is
pðPtÞ and is idle or receiving with probability 1� pðPtÞ.

To prove the existence of Nash equilibrium, we assume
that a maximum power threshold exists and all the nodes act
rationally and maintain the maximum power threshold Pt.
The probability that any l nodes out of N nodes are active is
given by

pl ¼
N

l

� �
ðpðPtÞÞlð1� pðPtÞÞN�l: ð9Þ

The expected net utility of ith node (if the node is
transmitting) is given by

E
�
uneti

�
¼
XN
l¼0

ðuiðsi; s�iÞ �AðsiÞÞpl: ð10Þ

As
PN

l¼0 C
N
l ðpðPtÞÞ

lð1� pðPtÞÞN�l ¼ 1, (10) can be rewritten as

E
�
uneti

�
¼
XN
l¼0

uiðsi; s�iÞpl �AðsiÞ: ð11Þ

If we define UiðPtÞ as

UiðPtÞ ¼
XN
l¼0

uiðsi; s�iÞpl; ð12Þ

then the expected net utility obtained by ith node is given by

E½uneti 	 ¼ UiðPtÞ �AðsiÞ: ð13Þ

If the node is transmitting, then the expected net utility
is given by (13). If the node is not transmitting, then by
definition (6) the expected net utility is 0. Thus, the
achievable gain (net utility considering both modes:

transmitting with 0 < si � Pt, and not transmitting)
obtained by node i is

GiðPtÞ ¼
Z Pt

0

½UiðPtÞ �AðxÞ	fsiðxÞdx

¼ UiðPtÞpðPtÞ �
Z Pt

0

AðxÞfsiðxÞdx:
ð14Þ

For the sake of convenience, let us denote

Z Pt

0

AðxÞfsiðxÞdx ¼ BðPtÞ:

Then, (14) can be written as

GiðPtÞ ¼ UiðPtÞpðPtÞ �BðPtÞ: ð15Þ

As far as the Nash equilibrium point is concerned, the
expected net utility for transmitting and for being silent
should be equal at the threshold, i.e., si ¼ Pt. Therefore, the
solution to the equation

UiðPtÞ �AðPtÞ ¼ 0 ð16Þ

is the required threshold for the power level. Next, we show
that if nodes follow this threshold Pt, then even without the
knowledge of other nodes’ power levels, the system can attain

Nash equilibrium, i.e., all nodes will reach a stable state where
the gain of an individual node cannot be increased further by
unilaterally changing the strategy of that node.

Let us assume T1 be the solution to (16). Then, the

average achievable gain of ith node obtained from the
system is given by

GiðT1Þ ¼
Z T1

0

½UiðT1Þ �AðxÞ	fsiðxÞdx

¼ UiðT1ÞpðT1Þ �BðT1Þ:
ð17Þ

But suppose that a node unilaterally changes its strategy
and changes the threshold value to T2. Then, the average
achievable gain obtained by this particular node is given by

GiðT2Þ ¼
Z T2

0

½UiðT1Þ �AðxÞ	fsiðxÞdx

¼ UiðT1ÞpðT2Þ �BðT2Þ:
ð18Þ

The difference, (GiðT1Þ �GiðT2Þ), can be then given by

the following expression:

½UiðT1ÞpðT1Þ �BðT1Þ	 � ½UiðT1ÞpðT2Þ �BðT2Þ	: ð19Þ

We use (16) to find the value of UiðT1Þ. Substituting the
value of UiðT1Þ in the above equation, we get

GiðT1Þ �GiðT2Þ ¼ AðT1Þ½pðT1Þ � pðT2Þ	 � ½BðT1Þ �BðT2Þ	:
ð20Þ

Two cases might arise depending on the relative values of
T1 and T2.

Case 1: T1 > T2

In this case, (20) can be written as

GiðT1Þ �GiðT2Þ ¼
Z T1

T2

½AðT1Þ �AðxÞ	fsiðxÞdx: ð21Þ
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Since AðsiÞ is an increasing function of power level si,

AðT1Þ �AðxÞ > 0 for x < T1. Therefore, for T1 > T2,

GiðT1Þ �GiðT2Þ > 0: ð22Þ

Case 2: T1 < T2

In this case, (20) can be written as

GiðT1Þ �GiðT2Þ ¼ �
Z T2

T1

½AðT1Þ �AðxÞ	fsiðxÞdx
� 	

: ð23Þ

Applying the same logic as in Case 1, we find AðT1Þ �
AðxÞ < 0 for T1 < x � T2, which gives

GiðT1Þ �GiðT2Þ > 0: ð24Þ

Thus, for both the cases, we find that GiðT1Þ > GiðT2Þ.
This shows that a node’s average achievable gain cannot be

increased further by changing its strategy unilaterally.

Therefore, Nash equilibrium exists only if the nodes agree

to abide by the threshold power level.

5.2 Nash Equilibrium with Varying Channel
Conditions

When channel conditions vary, it might be advantageous to

transmit packets when the instantaneous channel is better

than a certain threshold. This will ensure that packets are

transmitted and received successfully with a higher prob-

ability. Thus, it is intuitive that the cost/penalty to the

nodes will depend on the channel conditions in addition to

the cost component AðsiÞ; better the channel conditions,

lower the cost. Thus, we define the additional cost as

inversely proportional to the varying channel condition C.

Let this cost be �ð1CÞ, which is a decreasing function with C.

Then, the net utility of ith node can be written as

vneti ¼
uneti � �

1

C

� �
; if transmitting;

0; if not transmitting:

8<
: ð25Þ

To prove the existence of Nash equilibrium, we

hypothesize that a node should transmit, only if its channel

condition is better than a given threshold. Let this threshold

be Ct. Therefore, the probability of a node transmitting is

Z 1
Ct

fCðxÞdx ¼ p0ðCtÞ: ð26Þ

Let fCðxÞ be the probability density function of Ct � C <1.

Then, proceeding in a similar manner as done in Section 5.1,

the expected net utility of node i is given by

E
�
vneti

�
¼ U 0iðCtÞ � �

1

C

� �
: ð27Þ

The gain obtained by the node i is then

G0iðCtÞ ¼
Z 1
Ct

U 0iðCtÞ � �
1

x

� �� 	
fCðxÞdx

¼ U 0iðCtÞp0ðCtÞ �B0ðCtÞ;
ð28Þ

where B0ðCtÞ ¼
R1
Ct
�ð1xÞfCðxÞdx.

Now we will show that if the nodes act rationally and

transmit only when the channel condition is better than Ct,

then Nash equilibrium can be reached. As before, the
solution to

U 0iðCtÞ � �
1

Ct

� �
¼ 0

gives the value of the threshold.
Let C1 be the solution. Then, the average achievable gain

of ith node is given by

G0iðC1Þ ¼
Z 1
C1

U 0iðC1Þ � �
1

x

� �� 	
fCðxÞdx

¼ U 0iðC1Þp0ðC1Þ �B0ðC1Þ:
ð29Þ

Suppose, a node unilaterally changes its strategy and
decides the threshold to be C2. Then, the average achievable
gain for that node will be

G0iðC2Þ ¼
Z 1
C2

U 0iðC1Þ � �
1

x

� �� 	
fCðxÞdx

¼ U 0iðC1Þp0ðC2Þ �B0ðC2Þ:
ð30Þ

The difference, (G0iðC1Þ �G0iðC2Þ), in the gain is given by

½U 0iðC1Þp0ðC1Þ �B0ðC1Þ	 � ½U 0iðC1Þp0ðC2Þ �B0ðC2Þ	
¼ U 0iðC1Þ½p0ðC1Þ � p0ðC2Þ	 � ½B0ðC1Þ �B0ðC2Þ	

¼ � 1

C1

� �
½p0ðC1Þ � p0ðC2Þ	 � ½B0ðC1Þ �B0ðC2Þ	:

Again, two cases might arise depending on the relative
values of C1 and C2.

Case 1: C1 > C2

G0iðC1Þ �G0iðC2Þ ¼ �
Z C1

C2

�
1

C1

� �
� � 1

x

� �� 	
fCðxÞdx

� 	
> 0:

ð31Þ

Case 2: C1 < C2

G0iðC1Þ �G0iðC2Þ ¼
Z C2

C1

�
1

C1

� �
� � 1

x

� �� 	
fCðxÞdx

� 	
> 0:

ð32Þ

Thus, we find that a node cannot increase its gain by
unilaterally changing its strategy.

6 DETECTING TRANSMISSION POWER

In the previous section, we have evaluated the maximum
power level and minimum channel condition that a node
must comply with in order to achieve Nash equilibrium.
However, the optimal transmit power needs to be also
evaluated which will depend on the SINR, which in turn
depends on the strategies adopted by the other nodes. We
have two questions in hand that need to be addressed: 1) for
unreliable link, what is the probability of successful
transmission, and 2) with this probability of successful
transmission, what is the expected power consumption?

First, we try to find the probability of successful

transmission. We assume that node i is transmitting to

node j. Node j not only hears from node i but also from

other neighboring nodes if they are transmitting; these
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signals appear as interference. Now, if �j is the SINR

perceived by node j, then the bit error probability for the

link (i! j) is given by some inverse function of �j. For

example, with noncoherent FSK modulation scheme,

Pe ¼ 0:5e�
�j
2 , or with DPSK modulation scheme, Pe ¼

0:5e��j , where Pe is the bit error probability of the

link (i! j). The probability of successful transmission of

a packet containing F bits from node i to node j can be

given by

ps ¼ ð1� PeÞF : ð33Þ

For simplicity, the bit corruption is assumed to be

independently and identically distributed. It is clear from

the above definition that with increased �j, the bit error

probability decreases, which in turn increases the prob-

ability of successful transmission and vice versa.
With the probability of successful transmission defined,

we need to find the desired transmit power level for a link

over which the packets are to be transmitted. Before doing

so, let us try to find the expected power consumption. We

consider a scenario where a node is allowed to retransmit a

packet if a transmission is unsuccessful, and it continues to

retransmit until the transmission is successful. Let the

power level chosen by the transmitter node be P , and there

are ðn� 1Þ unsuccessful transmission followed by success-

ful transmission. Then, the expected power consumption by

the transmitter node can be given by

E½Power Consumption	P ¼
X1
n¼1

nð1� psÞn�1 � ps � P

¼ P

ps
:

ð34Þ

With the power consumption given in (34), we define the

expected power efficiency for power level P as an inverse

function of the expected power consumption. Then, the

optimal transmit power is the power level, which will

maximize the expected power efficiency.

7 DISCRETE POWER LEVELS

So far, we have assumed that the power levels chosen by the

nodes are continuous, i.e., the nodes can choose any value

between the maximum and the minimum power levels.

However, most practical (real) systems allow a finite set of

predefined power levels. For example, Cisco WLAN cards

can be configured with six power levels [37].
Since a practical system would allow finite number of

power levels, it is important that the values are chosen

carefully. This problem is similar to a scalar quantization

problem. In scalar quantization, a one-dimensional space is

partitioned into multiple nonoverlapping regions and all

points in a region map to a representative point of that

region. More precisely, an L-point scalar quantizer, Q, is a

mapping function such that Q : R ! S, where R is the real

number line and

S � fM1;M2;M3; . . . ;MLg 
 R:

The output set S has L power levels, where Mi (1 � i � L)
are the power levels. The goodness of S is usually measured
by a distortion metric which is defined as the nonnegative
cost dðx; x̂Þ associated with quantizing any input x with a
reproduction x̂. The choice of S is said to be optimal if it
minimizes the average distortion which quantifies the
performance of the system.

7.1 Distortion Factor

We define distortion factor, D, as the difference between
the best possible net utility obtainable with continuous
power level and the best possible net utility obtained with
L discrete power levels. Given the transmission powers in
both continuous and discrete cases, respectively, as PC and
PD, the distortion factor for the ith node is represented by

D ¼ uiðPC; s�iÞ � uiðPD; s�iÞ; ð35Þ

where s�i represents the strategy profile of rest of the nodes.
With increase in number of power levels L, the distortion
can be reduced.

7.2 Choice of Power Levels for Fixed L

It is well understood that having larger number of transmit
power levels allows the nodes to better utilize their (energy)
resources and also regulates the SINR of the system with a
finer precision. But the question is: given the number of
power levels (L), what values of transmit power will best
span the range from minimum to maximum? One naive
way is to have the L values uniformly spaced between the
minimum and the maximum. A more rational approach is
to determine the L values from the probability density
function of the interference as observed by a node. We
propose to use this interference distribution as a guideline
for determining the L power levels. It can be noted that the
eventual goal is to find such L transmit power levels that
will minimize the distortion for that L.

Theoretically, interference ranges from 0 to1. We divide
the interference pdf into L regions such that the probability
of occurrence of every region is equal. That is, for the
L regions, the partitions X1, X2, . . . , XL�1 are such that

Z X1

0

fpI
ðpIÞdpI ¼

Z X2

X1

fpI
ðpIÞdpI ¼ � � � ¼

Z 1
XL�1

fpI
ðpIÞdpI; ð36Þ

where fpI
ðpIÞ is the interference pdf. Or in other words, the

area of each of the L regions is equal. Now we need to find a
power level for each of these regions that would best
represent that region. For distortion minimization, the
power level in every region must bisect that region equally.
Thus, for the ith region (1 � i � L), the transmit power, Mi,
is obtained by solving

Z Mi

X i�1

fpI
ðpIÞdpI ¼

Z X i
Mi

fpI
ðpIÞdpI: ð37Þ

8 NUMERICAL RESULTS

We consider that the sensor nodes can transmit uniformly
in the range fsmin; smaxg. We assume that the SINR
received by the nodes is uniformly distributed between
fSINRmin; SINRmaxg. For our calculation, we assume
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smin ¼ 0 and smax ¼ 100 mW. SINR is assumed to range

from �12:5 dB to 11.5 dB.
Figs. 2 and 3 show the average bit error rate and

probability of successful transmissions, respectively, for

different values of SINR (in dB) perceived by node j from

all its neighboring nodes. We show the results for two

different modulation schemes: DPSK and noncoherent

PSK. As expected, with improvement in channel condition,

i.e., with increase in SINR, the probability of successful

transmissions increases.
Figs. 4 and 5 present the maximum power efficiency for

both schemes. More precisely, from the graphs, we find that

if SINR is low and transmitting power P is high, where

smin < P � smax, then the power efficiency is almost equal to

zero. This proves our previous claim, which is, during bad

channel conditions or below a certain threshold channel

condition (when the SINR of the intended receiver node is

very low), a node should not transmit. This only increases its

power consumption and thus expected power consumption

is no longer minimized. On the contrary, when the SINR is

high, a node should transmit with low power to maximize its
power efficiency. In this case, increasing transmitting power
unnecessarily will decrease the power efficiency below its
maximum. The plots also reveal the existence of an upper
bound on transmit power as was obtained in Section 5.1; a
condition to reach Nash equilibrium.

Let us now consider the cost component AðsiÞ that
results due to transmitting at power si. To get the cost, we
must consider AðsiÞ as some function of si. Since the exact
relationship between si and AðsiÞ is not known, we
consider three types of functions: linear, quadratic, and
exponential. Therefore,

AðsiÞ ¼
�� si; for linear;

�� s2
i ; for quadratic;

�� esi ; for exponential;

8><
>: ð38Þ

where � is a scaling factor. Though trivial, we show AðsiÞ
in Fig. 6.

Fig. 7 shows the variation of the net utility with
increasing transmitting power. It is intuitive that there
will be an optimal value of si, beyond which the net utility
will only decrease. This figure serves as a guideline for
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calculating the desired transmitting power to maximize net
utility for a node i transmitting to node j, given the
strategies taken by all other nodes. For finding the best
response to the strategies adopted by other nodes, we
assume a subset of nodes to be active that are operating
with fixed strategies.

For our calculation, we varied transmitting power from 1
to 100 mW. We find that there exist points for each of the
cost functions considered (i.e., linear, quadratic, and
exponential), which give the maximum net utility given
the strategies taken by all other nodes as fixed. This desired
transmitting power level gives the best response for the
node. If a node unilaterally changes its strategy and does
not transmit with this transmitting power level, then the
node will not get its best response and will not be able to
reach Nash equilibrium even if a Nash equilibrium exists
for this model.

Fig. 8 plots the net utility against the transmission power
for a fixed received power. We compare continuous power
level with two sets of discrete power levels; one set has six
and the other has 20 power levels. The power levels are

uniformly spaced between the maximum and the mini-
mum. As expected, with more number of allowed power
levels, the maximum net utility gets closer to that as
obtained by continuous power levels.

Fig. 9 shows the effect of having nonuniform power
levels. We choose 1, 5, 20, 30, 50, and 100 mW as the power
levels. These values are the power levels specified by the
Cisco Aironet cards and are of not any particular
significance to this research. We see that even with
nonuniform power levels as per Cisco regulations, the
interference in the receiving node is such that maximum net
utility is not obtained.

Fig. 10 shows the distortion factor with number of
discrete power levels. Here, we compare our proposed
mechanism of finding discrete power levels based on
interference distribution with uniform spaced discrete
power levels. The result shows that the distortion factor is
reduced with increase in number of power levels. More-
over, the distortion obtained is reduced if the knowledge of
the interference is used instead of having uniform equal-
spaced power levels. Equation (37) was solved through
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numerical analysis for the values of Mi. This result can be
used to find the desired number of power levels if the
allowed distortion level is known.

9 CONCLUSIONS

In this paper, we presented a game-theoretic approach to
solve the power control problem encountered in sensor
networks. We used noncooperative games with incomplete
information and studied the behavior and existence of Nash
equilibrium. We found that Nash equilibrium exists if we
assume a minimum and maximum threshold for channel
condition and power level, respectively. We suggest that a
node should only transmit when its channel condition is
better than the minimum threshold and its transmission
power level is below the threshold power level. We evaluated
the desired power level at which the nodes should transmit to
maximize their utilities under any given condition. We also
analyzed the case where nodes are allowed discrete power
levels as in most practical systems and compared their
performances with the continuous power levels.
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